## THE HERAPATHITE TEST FOR QUININE.\*

CHARLES H. STEPHENSON AND GEORGE L. KEENAN.

The so-called herapathite test for quinine, described by Herapath,<sup>1</sup> has long been recognized and described in textbooks on organic chemistry. When using this method for the identification of quinine in some tablets containing quinine sulphate, it became evident to the authors that the method of procedure as outlined could be simplified. The results obtained with their modified method have shown that the separation of the alkaloid from the tablet or pill is not necessary to obtain a crystalline precipitate characteristic of quinine.

The reagents employed, which were those recommended by Herapath, consisted of Solution A, composed of 12 Cc. of acetic acid, 4 Cc. of 95% alcohol, and 6 drops of a 10% solution of sulphuric acid, and Solution B, a 10% alcoholic solution of iodine. The technique used in making the test, modified in that the reagents were applied directly to the tablet or pill to be tested, rather than to the isolated alkaloid or its salt, was as follows:

Powder and place upon a microscopic slide a small portion of the tablet, a piece as large as the head of a pin being sufficient, and cover with a coverglass. Then add enough of Solution A to partly fill the space beneath the coverglass, and, from the opposite side of the coverglass, a drop or two of Solution B.

Rosettes of olive-green, cinnamon-brown, or bluish crystals immediately make their appearance in the preparation when examined under the microscope at about 90 magnification. This crystalline precipitate has been called "herapa-



·Fig. 1. Herapathite Crystals.  $(\times 120.)$ 

Fig. 2. Herapathite Crystals. (Illustrating Single Crystals.)

Fig. 3. Crystals Obtained from Quinidine. (X 120.)

thite" after its discoverer and is known also as the "iodo-sulfate of quinine" or "sulfate of iodo-quinine" (Fig. 1). Single crystals, many of which appear as right-angled parallelograms and six-sided prisms, are present as well (Fig. 2).

In order to determine what influence, if any, was exerted on the modified test by the presence of additional ingredients, tablets and pills containing substances other than quinine or its compounds were tested. The composition of the tablets

<sup>1</sup> The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 3, 161–183, 1852; 6, 171–175, 1853.

<sup>•</sup> Contribution from the Microchemical Laboratory, Bureau of Chemistry, U. S. Department of Agriculture, Washington, D. C. Read before Scientific Section, A. Ph. A., New Orleans meeting, 1921.

employed for this purpose, according to the labels, was as follows:

| No. | 1: Acetanilid           | 2 grains   | Ammonium salicylate.             | 2 grains    |
|-----|-------------------------|------------|----------------------------------|-------------|
|     | Quinine sulphate        | l grain    | Quinine hydrobromide             | l grain     |
| No. | 2: Camphor              | 1/2 grain  | Tinct. Gelsemium                 | 1 minim     |
|     | Fldext. Belladonna      | 1/4 minim  | Camphor                          | 1/4 grain   |
|     | Quinine sulphate        | 1/2 grain  | No. 10: Ferric chloride          | 1/2 grain   |
| No. | 3: Quinine hydrobromide | 1 grain    | Quinine hydrochloride            | 1 grain     |
|     | Acetanilid              | 1 grain    | Arsenic chloride                 | 1/64 grain  |
|     | Aloin                   | 1/10 grain | Mercuric chloride                | 1/48 grain  |
|     | Podophyllin             | 1/20 grain | No. 11: Reduced iron             | 1/2 grain   |
|     | Gelsemide               | 1/50 grain | Arsenious acid                   | 1/100 mgr.  |
| No. | 4: Acetanilid           | 2 grains   | Strychnine sulphate              | 1/200 grain |
|     | Morphine sulphate       | 1/20 grain | Quinine sulphate                 | 1/2 grain   |
|     | Quinine sulphate        | 2 grains   | No. 12: Quinine hydrobromide     |             |
|     | Caffeine, pure          | 1/2 grain  | Podophyllin                      |             |
| No. | 5: Quinine              | 2 grains   | Aloin                            |             |
|     | Ext. Aconite leaves     | 1/2 grain  | Atropine sulphate                |             |
|     | Morphine sulphate       | 1/20 grain | Strychnine sulphate              |             |
|     | Arsenious acid          | 1/20 grain | No. 13: Phenacetin               |             |
|     | Strychnine              | 1/30 grain | Opium                            |             |
| No. | 6: Quinine sulphate     | 2 grains   | (Phene-sal)                      |             |
|     | Acetanilid              | 2 grains   | Dover's powder                   |             |
|     | Morphine sulphate       | 1/8 grain  | Quinine sulphate                 |             |
| No. | 7: Camphor              | 1/4 grain  | Atropine sulphate                |             |
|     | Fldext. Belladonna      | 1/8 minim  | Aloin                            |             |
|     | Quinine sulphate        | 1/4 grain  | Camphor                          |             |
| No. | 8: Acetphenetidin       | 2½ grains  | Strychnine sulphate              |             |
|     | Quinine sulphate        | 2½ grains  | No. 14: Quinine tannate (powder  | )           |
| No. | 9: Acetphenetidin       | l grain    | No. 15: Quinine salicylate (powd | er)         |
|     |                         |            |                                  |             |

All of these samples gave the crystalline precipitate characteristic of quinine or its compounds when the test was applied as directed. In no case did the presence of other ingredients interfere with the reaction. The rosettes were clear-cut and easily discernible, particularly those obtained from Sample 4 (Fig. 1), single crystals (Fig. 2) being obtained from the reaction with Sample 13. When the other common cinchona alkaloids (cinchonine, cinchonidine and quinidine) were tested with these reagents, crystals were formed only with quinidine. These crystals, however, differed decidedly from those formed with quinine as they consisted of bundles of dark rods arranged characteristically (Fig. 3). The reaction is not a sensitive one and often crystals are obtained only with difficulty. Neither the powdered barks nor the tinctures of red cinchona and yellow cinchona gave crystalline precipitates when the reagents were applied.

The results of these tests demonstrated the simplicity with which the identity of quinine can be established without resorting to the technique required to obtain the alkaloid in a pure condition. The reagents are applied directly to the powdered material (tablet or pill), whereupon the crystalline precipitate is immediately formed. Such a simplified method of procedure should make the herapathite test more widely used than at present.